Inflammation triggers production of dimethylsphingosine from oligodendrocytes.
نویسندگان
چکیده
Neuropathic pain is a chronic, refractory condition that arises after damage to the nervous system. We previously showed that an increased level of the endogenous metabolite N,N-dimethylsphingosine (DMS) in the central nervous system (CNS) is sufficient to induce neuropathic pain-like behavior in rats. However, several important questions remain. First, it has not yet been demonstrated that DMS is produced in humans and its value as a therapeutic target is therefore unknown. Second, the cell types within the CNS that produce DMS are currently unidentified. Here we provide evidence that DMS is present in human CNS tissue. We show that DMS levels increase in demyelinating lesions isolated from patients with multiple sclerosis, an autoimmune disease in which the majority of patients experience chronic pain. On the basis of these results, we hypothesized that oligodendrocytes may be a cellular source of DMS. We show that human oligodendrocytes produce DMS in culture and that the levels of DMS increase when oligodendrocytes are challenged with agents that damage white matter. These results suggest that damage to oligodendrocytes leads to increased DMS production which in turn drives inflammatory astrocyte responses involved in sensory neuron sensitization. Interruption of this pathway in patients may provide analgesia without the debilitating side effects that are commonly observed with other chronic pain therapies.
منابع مشابه
Distinct age and differentiation-state dependent metabolic profiles of oligodendrocytes under optimal and stress conditions
Within the microenvironment of multiple sclerosis lesions, oligodendrocytes are subject to metabolic stress reflecting effects of focal ischemia and inflammation. Previous studies have shown that under optimal conditions in vitro, the respiratory activity of human adult brain-derived oligodendrocytes is lower and more predominantly glycolytic compared to oligodendrocytes differentiated in vitro...
متن کاملP 140: Stem Cells in Multiple Sclerosis
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS). Inflammation caused by immune cells destroy the myelin and then axon. CNS failure to complete repair results in permanent disabilities. Some types of stem cells have special potentials to repair these injuries and even cure MS. Neural crest stem cells with a mutual origin with CNS and the ability of differen...
متن کاملOligodendrocytes damage in Alzheimer's disease: beta amyloid toxicity and inflammation.
Research on Alzheimer's disease (AD) focuses mainly on neuronal death and synaptic impairment induced by beta-Amyloid peptide (Abeta), events at least partially mediated by astrocyte and microglia activation. However, substantial white matter damage and its consequences on brain function warrant the study of oligodendrocytes participation in the pathogenesis and progression of AD. Here, we anal...
متن کاملAnti-inflammatory effects of sphingosine kinase modulation in inflammatory arthritis.
Sphingosine kinase (SphK) is a key enzyme in the sphingolipid metabolic pathway responsible for phosphorylating sphingosine into sphingosine-1-phosphate (S1P). SphK/S1P play a critical role in angiogenesis, inflammation, and various pathologic conditions. Recently, S1P(1) receptor was found to be expressed in rheumatoid arthritis (RA) synovium, and S1P signaling via S1P(1) enhances synoviocyte ...
متن کاملNeuron to glia signaling triggers myelin membrane exocytosis from endosomal storage sites
During vertebrate brain development, axons are enwrapped by myelin, an insulating membrane produced by oligodendrocytes. Neuron-derived signaling molecules are temporally and spatially required to coordinate oligodendrocyte differentiation. In this study, we show that neurons regulate myelin membrane trafficking in oligodendrocytes. In the absence of neurons, the major myelin membrane protein, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuroscience
دوره 279 شماره
صفحات -
تاریخ انتشار 2014